Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

L-2-Nitrimino-1,3-diazepane-4carboxylic acid monohydrate

Harutyun A. Karapetyan

Molecular Structure Research Center, National Academy of Sciences RA, Azatutyan Ave. 26, 375014 Yerevan, Republic of Armenia Correspondence e-mail: harkar@nfsat.am

Received 9 May 2008; accepted 19 May 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.046; wR factor = 0.132; data-to-parameter ratio = 8.8.

The title compound, $C_6H_{10}N_4O_4$ ·H₂O, crystallizes with two independent formula units in the asymmetric unit, their geometric parameters being quite similar. The conformations of the 1,3-diazepane rings are also similar and close to a twistboat. All ten O- and N-bound H atoms are involved in hydrogen bonds, two of which are intra- and eight intermolecular linking crystallographically independent molecules, into a three-dimensional hydrogen-bonded network.

Related literature

For the crystal structures of some analogues of the title compound, see: Apreyan *et al.* (2008*a*, 2008*b*); Karapetyan *et al.* (2007); Petrosyan *et al.* (2005); Karapetyan (2008). For related literature, see: Paul *et al.* (1961); Apreyan & Petrosyan (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{6}H_{10}N_{4}O_{4}\cdot H_{2}O\\ M_{r}=220.20\\ Orthorhombic, P2_{1}2_{1}2_{1}\\ a=9.0115 \ (18) \ \text{\AA}\\ b=14.729 \ (3) \ \text{\AA}\\ c=15.257 \ (3) \ \text{\AA} \end{array}$

 $V = 2025.0 (7) Å^{3}$ Z = 8 Mo K\alpha radiation \(\mu = 0.13 \text{ mm}^{-1}\) T = 293 (2) K 0.22 \times 0.17 \times 0.12 \text{ mm}\)

Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction: none 6714 measured reflections 2512 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.132$ S = 1.022512 reflections 286 parameters 6 restraints 1583 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ 3 standard reflections every 400 reflections intensity decay: none

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.44\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.27\ e\ \mathring{A}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

, , ,				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N3^{i}$	0.82	1.90	2.716 (4)	173
N1-H3···O3	0.86	2.02	2.586 (4)	123
$N2-H10\cdots O2^{ii}$	0.86	2.05	2.889 (4)	163
O5−H11···O9 ⁱⁱⁱ	0.82	1.69	2.510 (5)	174
N5−H13···O7	0.86	2.04	2.584 (5)	121
$N6-H20\cdots O6^{iv}$	0.86	2.16	2.937 (5)	150
O9−H21···N7	0.83 (4)	2.11 (3)	2.902 (6)	160 (7)
O9−H22···O10	0.84 (4)	1.86 (3)	2.662 (7)	159 (7)
$O10-H23\cdots O7^{v}$	0.86 (4)	2.04 (4)	2.869 (6)	163 (6)
O10−H24···O3	0.86 (4)	2.41 (8)	2.856 (6)	113 (5)

Symmetry codes: (i) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (v) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$.

Data collection: *DATCOL* in *CAD-4 Manual* (Enraf–Nonius, 1988); cell refinement: *LS* in *CAD-4 Manual* (Enraf–Nonius, 1988); data reduction: *HELENA* (Spek, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author thanks Dr R. A. Apreyan and Dr A. M. Petrosyan for providing the crystals and Dr R. A. Tamazyan for valuable discussion of the results.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2187).

References

Apreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008*a*). J. Mol. Struct. **874**, 187–193.

Apreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008b). J. Mol. Struct. 875, 272–281.

Apreyan, R. A. & Petrosyan, A. M. (2008). In preparation.

Enraf-Nonius (1988). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands. Karapetyan, H. A. (2008). Acta Cryst. E64, 0943.

Karapetyan, H. A., Antipin, M. Yu., Sukiasyan, R. P. & Petrosyan, A. M. (2007). J. Mol. Struct. 831, 90–96.

Paul, R., Anderson, G. W. & Callahan, F. M. (1961). J. Org. Chem. 26, 3347– 3350.

Petrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Antipin, M. Yu. & Apreyan, R. A. (2005). J. Cryst. Growth, **275**, e1927–e1933.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.

Acta Cryst. (2008). E64, o1222 [doi:10.1107/S1600536808015146]

L-2-Nitrimino-1,3-diazepane-4-carboxylic acid monohydrate

H. A. Karapetyan

Comment

The L-nitroarginine and its crystaline salts have been investigated as a promising line of non-linear optical materials [Apreyan *et al.*(2008a) and Apreyan *et al.*(2008b)]. The cyclic form of L-nitroarginine was reported for the first time in Paul *et al.*, 1961, where it was suggested to be 2-nitro-4-carboxy-1,3-diazacycloheptane. Recently, on the basis of the crystal structure of the cyclic form of L-nitroarginine [Karapetyan, 2008] it was shown to be L-2-nitrimino-1,3-diazepane-4-carboxylic acid (L-NIDCA).

We present herein a structural study of the L-NIDCA monohydrate, $C_6H_{10}N_4O_4 \times H_2O$ (I), which crystallizes with two independent formulas in the asymmetric unit, shown in Fig. 1. The metric parameters of independent L-NIDCA molecules are in agreement with commonly accepted values and their conformations are the same, being close to that of a 7-membered ring twist-boat. All ten active H atoms in the crystal are involved in hydrogen bonding (Table 1), two of them being intra- and eight inter-molecular, linking crystallographically independent units and by way of which a tree-dimensional H bonded network results (Fig. 2).

Experimental

By the reaction of L-nitroarginine with KOH the potassium salt was obtained. By the interaction of this potassium salt with HBF4 and further separation of the poorly soluble KBF4 salt, single crystals of (I) were obtained by slow evaporation below room temperature. Details of the obtainment of L-NIDCA and L-NIDCA·H₂O, as well as vibrational spectra, thermal properties and SHG will be reported soon separately [Apreyan and Petrosyan, 2008].

Refinement

The positions of all hydrogen atoms clearly revealed in a difference Fourier map. Foillowing common practice, however, all H atoms except those belonging to water molecules were placed in geometrically calculated positions and included in the refinement in a riding model approximation (O-H: 0.85Å, C-H: 0.97-0.98Å, N-H:0.86Å). The positions of H atoms of both independent water molecules were determined from the difference Fourier maps and refined with restrained O-H: 0.85 (4)Å distances. Displacement parameters were taken as $U_{iso}(H)$: 1.2 U_{eq} (carrier atom).

In the absense of any significant anomalous effect, Friedel pairs were merged, which explains the rather low parameters/reflections ratio.

Figures

Fig. 1. View of the asymmetric unit of (I) showing atomic numbering and displacement ellipsoids at the 50% probability. Only active H atoms are presented for clarity. H-bonds drawn in broken lines.

Fig. 2. Packing view of the structure (non-active H atoms not shown). H-bonds drawn in broken lines. Symmetry codes: (i) -x + 2, y - 1/2, -z + 3/2; (ii) -x + 2, y + 1/2, -z + 3/2; (iii) -x + 1, y - 1/2, -z + 3/2; (iv) -x + 1, y + 1/2, -z + 3/2.

L-2-Nitrimino-1,3-diazepane-4-carboxylic acid monohydrate

Crystal data

C₆H₁₀N₄O₄·H₂O $M_r = 220.20$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.0115 (18) Å b = 14.729 (3) Å c = 15.257 (3) Å V = 2025.0 (7) Å³ Z = 8

F(000) = 928
$D_{\rm x} = 1.445 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 24 reflections
$\theta = 14 - 16^{\circ}$
$\mu = 0.13 \text{ mm}^{-1}$
T = 293 K
Prismatic, yellow
$0.22\times0.17\times0.12~mm$

Data collection

Enraf–Nonius CAD-4	$R_{\rm c} = 0.040$
diffractometer	$N_{\rm int} = 0.040$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
graphite	$h = 0 \rightarrow 11$
$\omega/2\theta$ scans	$k = -17 \rightarrow 18$
6714 measured reflections	$l = -19 \rightarrow 19$

2512 independent reflections	3 standard reflections every 400 reflections
1583 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.132$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0704P)^2 + 0.3433P]$ where $P = (F_o^2 + 2F_c^2)/3$
2512 reflections	$(\Delta/\sigma)_{\rm max} = 0.014$
286 parameters	$\Delta \rho_{max} = 0.44 \text{ e } \text{\AA}^{-3}$
6 restraints	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.8550 (4)	0.81385 (17)	0.6510 (2)	0.0559 (8)
H1	0.8648	0.7605	0.6653	0.084*
O2	1.0592 (4)	0.83261 (16)	0.7324 (2)	0.0556 (8)
O3	1.2651 (4)	1.00838 (17)	0.83155 (19)	0.0592 (8)
O4	1.2868 (4)	1.1299 (2)	0.90927 (18)	0.0591 (8)
N1	1.0627 (4)	1.00945 (18)	0.7113 (2)	0.0421 (7)
H3	1.1404	0.9789	0.7256	0.051*
N2	0.9663 (4)	1.1533 (2)	0.6923 (2)	0.0507 (9)
H10	0.9437	1.2018	0.7207	0.061*
N3	1.1385 (4)	1.13746 (18)	0.7971 (2)	0.0407 (7)
N4	1.2311 (4)	1.0889 (2)	0.8470 (2)	0.0431 (8)
C1	0.9593 (5)	0.8623 (2)	0.6876 (2)	0.0399 (9)
C2	0.9446 (5)	0.9624 (2)	0.6654 (2)	0.0409 (9)
H2	0.8492	0.9843	0.6879	0.049*
C3	0.9495 (6)	0.9789 (3)	0.5664 (2)	0.0561 (11)

H4	1.0283	0.9428	0.5406	0.067*
Н5	0.8563	0.9601	0.5403	0.067*
C4	0.9765 (8)	1.0790 (3)	0.5471 (3)	0.0733 (16)
H6	1.0822	1.0907	0.5512	0.088*
H7	0.9467	1.0911	0.4872	0.088*
C5	0.8980 (6)	1.1435 (3)	0.6055 (3)	0.0688 (15)
H9	0.8951	1.2026	0.5774	0.083*
H8	0.7964	1.1231	0.6129	0.083*
C6	1.0582 (5)	1.0969 (2)	0.7326 (2)	0.0382 (8)
05	0.2203 (4)	0.6209 (2)	0.6113 (2)	0.0681 (9)
H11	0.1992	0.5667	0.6112	0.102*
O6	0.3842 (4)	0.5793 (2)	0.7134 (2)	0.0702 (9)
07	0.6264 (5)	0.6721 (2)	0.8634 (2)	0.0816 (12)
08	0.7679 (5)	0.7592 (2)	0.9383 (2)	0.0785 (11)
N5	0.5019 (4)	0.7416 (2)	0.7264 (2)	0.0474 (8)
H13	0.5467	0.6920	0.7399	0.057*
N6	0.5183 (5)	0.8983 (2)	0.7299 (2)	0.0581 (10)
H20	0.5327	0.9434	0.7646	0.070*
N7	0.6483 (5)	0.8224 (2)	0.8311 (2)	0.0564 (10)
N8	0.6787 (5)	0.7483 (3)	0.8780 (2)	0.0594 (10)
C7	0.3282 (5)	0.6353 (3)	0.6665 (3)	0.0518 (10)
C8	0.3764 (5)	0.7345 (2)	0.6670 (3)	0.0479 (10)
H12	0.2949	0.7710	0.6908	0.057*
С9	0.4115 (6)	0.7691 (3)	0.5742 (3)	0.0577 (12)
H14	0.4718	0.7244	0.5441	0.069*
H15	0.3195	0.7757	0.5419	0.069*
C10	0.4921 (8)	0.8586 (4)	0.5744 (3)	0.0860 (17)
H16	0.5977	0.8462	0.5761	0.103*
H17	0.4717	0.8888	0.5191	0.103*
C11	0.4585 (9)	0.9205 (3)	0.6433 (3)	0.0859 (19)
H18	0.3515	0.9250	0.6482	0.103*
H19	0.4953	0.9799	0.6267	0.103*
C12	0.5530 (5)	0.8170 (2)	0.7613 (2)	0.0453 (9)
09	0.8626 (5)	0.9582 (3)	0.8857 (4)	0.0980 (13)
H21	0.799 (5)	0.918 (3)	0.883 (4)	0.118*
H22	0.927 (6)	0.944 (4)	0.923 (4)	0.118*
O10	1.1127 (6)	0.9147 (4)	0.9685 (4)	0.134 (2)
H23	1.132 (9)	0.882 (5)	1.014 (3)	0.161*
H24	1.170 (9)	0.893 (6)	0.929 (4)	0.161*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.063 (2)	0.0304 (13)	0.0741 (19)	-0.0079 (14)	-0.0175 (17)	0.0017 (13)
O2	0.0548 (17)	0.0305 (13)	0.081 (2)	0.0015 (13)	-0.0159 (18)	0.0023 (14)
O3	0.0668 (19)	0.0344 (13)	0.0765 (18)	0.0104 (14)	-0.0205 (18)	-0.0031 (13)
O4	0.070 (2)	0.0534 (16)	0.0541 (16)	0.0008 (17)	-0.0194 (16)	-0.0042 (14)
N1	0.0486 (19)	0.0241 (13)	0.0536 (17)	0.0017 (14)	-0.0098 (16)	-0.0009 (13)

N2	0.065 (2)	0.0289 (15)	0.058 (2)	0.0053 (16)	-0.0198 (19)	-0.0017 (14)
N3	0.0478 (19)	0.0276 (14)	0.0467 (16)	0.0026 (15)	-0.0085 (16)	-0.0011 (13)
N4	0.051 (2)	0.0338 (15)	0.0446 (16)	-0.0019 (16)	-0.0056 (17)	0.0014 (13)
C1	0.042 (2)	0.0301 (16)	0.047 (2)	0.0002 (18)	0.0023 (19)	-0.0020 (16)
C2	0.048 (2)	0.0291 (17)	0.0456 (19)	-0.0018 (17)	-0.008(2)	-0.0025 (15)
C3	0.082 (3)	0.042 (2)	0.045 (2)	-0.008 (2)	-0.006 (2)	-0.0004 (17)
C4	0.117 (5)	0.057 (3)	0.047 (2)	-0.008 (3)	-0.011 (3)	0.008 (2)
C5	0.099 (4)	0.040 (2)	0.068 (3)	0.006 (3)	-0.031 (3)	0.007 (2)
C6	0.046 (2)	0.0289 (16)	0.0402 (18)	-0.0023 (17)	0.0028 (18)	-0.0001 (15)
05	0.072 (2)	0.0556 (18)	0.077 (2)	-0.0083 (17)	-0.010 (2)	0.0005 (17)
O6	0.086 (2)	0.0405 (15)	0.085 (2)	0.0007 (16)	-0.015 (2)	0.0082 (16)
07	0.123 (3)	0.0527 (19)	0.069 (2)	-0.007 (2)	-0.022 (2)	0.0136 (16)
08	0.111 (3)	0.074 (2)	0.0512 (16)	0.024 (2)	-0.021 (2)	-0.0030 (15)
N5	0.060 (2)	0.0358 (15)	0.0461 (18)	0.0087 (16)	-0.0062 (19)	-0.0002 (14)
N6	0.082 (3)	0.0379 (17)	0.055 (2)	0.0094 (18)	-0.006 (2)	-0.0026 (15)
N7	0.081 (3)	0.0446 (18)	0.0435 (17)	0.0112 (19)	-0.010 (2)	-0.0004 (15)
N8	0.082 (3)	0.057 (2)	0.0387 (17)	0.018 (2)	-0.003 (2)	-0.0031 (17)
C7	0.053 (3)	0.047 (2)	0.056 (2)	0.005 (2)	0.000 (2)	-0.003 (2)
C8	0.050 (2)	0.039 (2)	0.055 (2)	0.0087 (19)	0.001 (2)	-0.0025 (18)
C9	0.069 (3)	0.055 (3)	0.049 (2)	0.000(2)	-0.011 (2)	0.0107 (19)
C10	0.114 (5)	0.084 (4)	0.059 (3)	-0.012 (4)	-0.005 (3)	0.017 (3)
C11	0.140 (6)	0.040 (2)	0.078 (3)	0.008 (3)	-0.035 (4)	0.013 (2)
C12	0.059 (2)	0.0377 (19)	0.0396 (19)	0.009 (2)	0.006 (2)	0.0003 (16)
09	0.082 (3)	0.059 (2)	0.152 (4)	0.013 (2)	-0.013 (3)	0.009 (2)
O10	0.110 (4)	0.172 (5)	0.120 (4)	0.017 (4)	-0.016 (3)	0.082 (4)

Geometric parameters (Å, °)

01—C1	1.306 (5)	O6—C7	1.203 (5)
O1—H1	0.8200	O7—N8	1.238 (5)
O2—C1	1.212 (5)	O8—N8	1.232 (5)
O3—N4	1.247 (4)	N5-C12	1.316 (5)
O4—N4	1.232 (4)	N5—C8	1.453 (5)
N1—C6	1.329 (4)	N5—H13	0.8600
N1—C2	1.450 (5)	N6—C12	1.326 (5)
N1—H3	0.8600	N6—C11	1.463 (6)
N2—C6	1.324 (5)	N6—H20	0.8600
N2—C5	1.467 (5)	N7—N8	1.334 (5)
N2—H10	0.8600	N7—C12	1.371 (6)
N3—N4	1.338 (4)	C7—C8	1.525 (6)
N3—C6	1.359 (5)	C8—C9	1.536 (6)
C1—C2	1.518 (5)	C8—H12	0.9800
C2—C3	1.531 (5)	C9—C10	1.505 (7)
С2—Н2	0.9800	С9—Н14	0.9700
C3—C4	1.523 (6)	С9—Н15	0.9700
С3—Н4	0.9700	C10-C11	1.424 (7)
С3—Н5	0.9700	С10—Н16	0.9700
C4—C5	1.482 (7)	С10—Н17	0.9700
С4—Н6	0.9700	C11—H18	0.9700

С4—Н7	0.9700	C11—H19	0.9700
С5—Н9	0.9700	O9—H21	0.83 (4)
С5—Н8	0.9700	O9—H22	0.84 (4)
O5—C7	1.304 (5)	O10—H23	0.86 (4)
O5—H11	0.8200	O10—H24	0.86 (4)
C1—O1—H1	109.5	C12—N5—C8	125.8 (3)
C6—N1—C2	124.0 (3)	C12—N5—H13	117.1
C6—N1—H3	118.0	C8—N5—H13	117.1
C2—N1—H3	118.0	C12—N6—C11	127.9 (3)
C6—N2—C5	128.3 (3)	C12—N6—H20	116.1
C6—N2—H10	115.9	C11—N6—H20	116.1
C5—N2—H10	115.9	N8—N7—C12	119.9 (3)
N4—N3—C6	120.6 (3)	08—N8—07	120.1 (4)
04—N4—O3	120.8 (3)	08—N8—N7	115.3 (4)
04—N4—N3	115 5 (3)	07—N8—N7	124 6 (4)
03—N4—N3	123.6 (3)	06-07-05	121.0(1) 1258(4)
02-01-01	125.0(3) 125.4(3)	06-07-03	123.0(1) 122.4(4)
02 - 01 - 01	123.4(3) 122.7(4)	05-07-08	122.4(4)
01 - 01 - 02	122.7(4) 111.9(3)	N5-C8-C7	107.0(3)
$N_1 = C_2 = C_1$	111.9(3) 107.0(3)	N5 C8 C9	107.0(3)
N1 = C2 = C1	107.0(3)	13 - 63 - 63	113.0(3)
N1 = C2 = C3	112.5(3)	N5 C9 H12	108.2
$C_1 = C_2 = C_3$	111.8 (5)	$N_{3} = C_{6} = H_{12}$	108.3
NI = C2 = H2	108.5	$C_{1} = C_{8} = H_{12}$	108.5
C1 = C2 = H2	108.5	C9—C8—H12	108.3
C3—C2—H2	108.5	C10-C9-C8	112.9 (4)
C4—C3—C2	110.4 (3)	C10—C9—H14	109.0
C4—C3—H4	109.6	C8—C9—H14	109.0
С2—С3—Н4	109.6	С10—С9—Н15	109.0
С4—С3—Н5	109.6	С8—С9—Н15	109.0
С2—С3—Н5	109.6	H14—C9—H15	107.8
H4—C3—H5	108.1	C11—C10—C9	117.3 (5)
C5—C4—C3	115.4 (4)	C11—C10—H16	108.0
С5—С4—Н6	108.4	С9—С10—Н16	108.0
С3—С4—Н6	108.4	C11—C10—H17	108.0
С5—С4—Н7	108.4	C9—C10—H17	108.0
С3—С4—Н7	108.4	H16—C10—H17	107.2
H6—C4—H7	107.5	C10-C11-N6	116.5 (4)
N2—C5—C4	113.9 (4)	C10-C11-H18	108.2
N2—C5—H9	108.8	N6—C11—H18	108.2
С4—С5—Н9	108.8	С10—С11—Н19	108.2
N2—C5—H8	108.8	N6—C11—H19	108.2
С4—С5—Н8	108.8	H18—C11—H19	107.3
Н9—С5—Н8	107.7	N5-C12-N6	122.2 (4)
N2—C6—N1	120.9 (4)	N5	125.7 (3)
N2—C6—N3	113.2 (3)	N6—C12—N7	112.1 (3)
N1—C6—N3	125.9 (3)	H21—O9—H22	109 (5)
С7—О5—Н11	109.5	H23—O10—H24	104 (5)
C6—N3—N4—O4	-172.7 (4)	C12—N7—N8—O8	178.5 (4)

C6—N3—N4—O3	9.7 (6)	C12—N7—N8—O7	0.0 (7)
C6—N1—C2—C1	-156.2 (3)	C12—N5—C8—C7	-162.6 (4)
C6—N1—C2—C3	80.7 (5)	C12—N5—C8—C9	73.8 (5)
O2-C1-C2-N1	-3.2 (5)	O6—C7—C8—N5	4.4 (6)
O1-C1-C2-N1	178.4 (3)	O5—C7—C8—N5	-176.7 (3)
O2—C1—C2—C3	120.1 (4)	O6—C7—C8—C9	128.7 (5)
O1—C1—C2—C3	-58.3 (5)	O5—C7—C8—C9	-52.4 (5)
N1—C2—C3—C4	-44.5 (6)	N5-C8-C9-C10	-45.9 (5)
C1—C2—C3—C4	-164.7 (4)	C7—C8—C9—C10	-166.7 (4)
C2—C3—C4—C5	-39.4 (7)	C8—C9—C10—C11	-32.6 (7)
C6—N2—C5—C4	-20.4 (7)	C9-C10-C11-N6	73.8 (8)
C3—C4—C5—N2	77.0 (6)	C12—N6—C11—C10	-26.1 (9)
C5—N2—C6—N1	-22.8 (7)	C8—N5—C12—N6	-16.8 (7)
C5—N2—C6—N3	159.5 (4)	C8—N5—C12—N7	164.7 (4)
C2—N1—C6—N2	-19.6 (6)	C11—N6—C12—N5	-18.4 (8)
C2—N1—C6—N3	157.9 (4)	C11—N6—C12—N7	160.3 (5)
N4—N3—C6—N2	176.6 (3)	N8—N7—C12—N5	-10.4 (6)
N4—N3—C6—N1	-1.0 (6)	N8—N7—C12—N6	170.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1···N3i	0.82	1.90	2.716 (4)	173.
N1—H3···O3i	0.86	2.02	2.586 (4)	123.
N2—H10…O2i	0.86	2.05	2.889 (4)	163.
O5—H11…O9i	0.82	1.69	2.510 (5)	174.
N5—H13…O7i	0.86	2.04	2.584 (5)	121.
N6—H20…O6i	0.86	2.16	2.937 (5)	150.
O9—H21…N7i	0.83 (4)	2.11 (3)	2.902 (6)	160 (7)
O9—H22…O10i	0.84 (4)	1.86 (3)	2.662 (7)	159 (7)
O10—H23…O7i	0.86 (4)	2.04 (4)	2.869 (6)	163 (6)
O10—H24…O3i	0.86 (4)	2.41 (8)	2.856 (6)	113 (5)
Symmetry codes: i; i; i; i; i; i.				

Fig. 1

